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We consider an axisymmetric Dirichlet problem for the Laplace equation in a region 
representing a space with a semi-infinite cylindrical cut, and reduce the problem to the 

Fredholm integral equation of second kind. Solution of this equation is shown to exist 

and be unique, using the principle of a fixed point. 

1. Formulation of the problem and ftr reduction to dual integ- 
r a 1 8 qua t i o n 8. We divide the outside of the cylinder (Fig. 1) into two regions : 

Fig. 1 

I (z<o~ Odr<-m)and2G>O,i<r<-=)andwe 

obtain in these regions the harmonic functions ur (r, z) 

and US (r, a) Au, = o, Aua= 0 (1.1) 
satisfying the boundary conditions 

ul~z-o = f (49 112 IT+ = f?(Z) (1.2) 

r<1 

and the conditions of continuity 

Ul I;2 = u2 Iz=o* % I,=% I_ W) 
01 

Regarding the behavior at infinity we assume, that 
limu,= Oass-,--oo,and when z+ + oo,thesolution 

US should become a solution of the corresponding antisymmetric Dirichlet problem for an 

infinite cylinder. 
We seek the harmonic functions ur (r, z) and YZ (r, z) in the form of the following 

integrals : 
111 (r, 2) = y A (A) Jo (hr) eazdh 

O” K” W) sin vz dv 

a3 i 00 
2 

ug (r. 2) = 2 
s 

- 
Ko 6’) 

S g (5) sin ~5 d6 + 1 LB P) Im 

0 0 0 

[ ;;~;)]t+dK (1.5) 

satisfying the-indicated conditions at infinity and the second condition of (1.2). The 

first condition of (1.3) will become 
cu 02 

S A (I.) ~0 (hr) dh = s hB (~1 Im 
0 0 

[ ::::;)]dh (1.6) 

This enables us to use the Weber transforms to express i? (k) in terms of A (h) 

B (h) = T p Im [H,(‘) (h) H,,(l) (hp)] dp.7 A (v) Jo (vp) dv 
i 

(1.7) 
0 

Fulfilling the remaining conditions of (1.2) and (1.3) we can reduce the problem to 
dual integrations (dual equations with the Weber kernel were considered e. g. in [l-3]) 

in A (A) 
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p(h)lo(hr)da=I(r) (O<r<l) (1.8) 
0 

(l<r<m) (1.9) 
2. Reduction of the dual integral equrtion8 to the Fredholm 

integral equrtionr. Let us make the following integral substitution : 

A(i)=~@(l)coSitdt (2.U 

0 

We shall find that it will be more convenient to seek Q, (t) sepatately at each range 
(0, 1) and (I, 00) of variation of t. We shall therefore use the following notation : 

Inserting (2.1) into (I. 8) and using the well known relation [4] 

we obtain 

(2.2) 

(2.4) 

This is the Schliimilch equation in cp (t) and its solution is 
t 

2 d 
T(t) =ydt 

s 

Pf (P)dP 
oar (2.5) 

Inserting now (2.1) into (1.9) we obtain 
00 

1 h,.(hr)di~m(~)co.hrdr=% 1 ~ 
O” KO (vr) O” 

&(v) ydv S g (5) sin Y; dj - 

0 0 0 0 

03 

(2.6) 

Let us apply to (2.6) the following inwgral nansformation : multiply each term by 
2/n T($- t2) -l/s and integrate with respect to r from t to 00 . Making also use of 

u JO (hr) r dr S co9 at 
1 j/m =-x--e 

we obtain (2.6) in the form 

03 
. S H,(l) (hr) r dr 

=$ (2.7) 

t 
)‘r2 

Let us consider (2.8) in the region 1 < t < 00. Its left side is $ (t) and the first inte- 

gral in its right side converges for all g (i) which can be expanded into Fourier sine 
integral. We shall inspect the second integral in the right side of (2.8) in more detail. 
To begin with 
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where B, (h) denotes the following function of ?L : 
w 

BI (h) = 1 p Im [HO(“) (A) H,(l) (hp)] dp L cp (t) dr 

1 
s n TfR 

(2.9) 

(2.10) 

which is already lznown. 
By the third integral of (2.7) we have L’3 

B (h) = B1 (h) + +-j $ (.t) Im [HOt2’ (h) eiAT] dz 
1 

(2.11) 

hence the second integral in the right side of (2.8) can be written as 

where c1 

s(t) = ' h&(h) I 
I 

(2.13) 

0 
Since 

expression (2.12) can be transformed into 
co 

(2.15) 

s 
dh = S (t) + 3 II, (t) - Re 

‘33 Jo(k) co 

[S 

iht 

H,(” (I.) 
e dh I$ (T) eihT dz 

s I 
0 0 1 

Let us consider the last integral on the complex variable J.-plane. Using the Cauchy’s 
theorem we shall replace the integration along the real axis by the integration along the 

imaginary axis. For h = iv we obtain 

(2.16) 

Inserting now (2.16) into (2,15) and (2.15) into (2.8), we obtain the following inte- 
gral equation : 

0 0 1 0 

Introducing a new variable 

0 (t) = 1/t - 14 (t) 

we obtain the following integral equation : 

(2.18) 
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(2; 19) 

It can be shown (see the Appendix) that, if.h (t) is a bounded and ~antiuous function, 
then Eq,(2.19) has a unique solution in this case of functions, 

Thus the solution is given by Formulas (1.4)-(1.7). (2. X) and (2.2). in which the fun+ 
tions ‘p ($) and 18 (t) are defined by (2.X) and the integral equation (2.19). 

9. A p p 6 n d f x l Let us consider the operator B =. U (w ) defined by 

y (q ‘z: n (1) - OJ (z) do 
1 0 

in a space of bounded, continuous functions with the norm 

P(W, @*I= lnax fO (Q--o* (@f 

and let us consider the modulus of the difference between Y and y* where y* = U (@ *) 

The last integral is easily calculated and is equal to n: “hence 

P(Yt Y*)~vanmaxP(~, a*) 

By (2,201 Amav = 1.3305 < 2, therefore 

P f% Y*f ,, up (a I @I 7 fa < 1) 

Thus the operator Y = U (w ) is a contraction operator and by the Banach theorem it 

has a fixed point. This implies that‘(2.19) has a unique solution in the given class of 

functions, which can be obtained by the method of consecutive approximations. 
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