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We consider an axisymmetric Dirichlet problem for the Laplace equation in a region
representing a space with a semi~-infinite cylindrical cut, and reduce the problem to the
Fredholm integral equation of second kind, Solution of this equation is shown to exist
and be unique, using the principle of a fixed point,

1, Formulation of the problem and its reduction to dual integ-
ral equations, We divide the outside of the cylinder (Fig, 1) into two regions :
1(z<0, 0<r<)and 2(z>0,1<r<oo)and we

obtain in these regions the harmonic functions u, (r, 2)
and uz (r, 2) Au; =0, Auz=0 (1.1)
satisfying the boundary conditions
| Wil =1 () Ba]m=8(2) (1:2)
r<1
== { and the conditions of continuity
—_t—————- du du
0// u1|z=0—-_—u2[2____0, —a—z Z=O=W 10 (1.3)
r>1 r>1
Fig. 1 Regarding the behavior at infinity we assume, that

lim u, = 0 as 2+ —oo_ and when z — < oo, the solution
us should become a solution of the corresponding antisymmetric Dirichlet problem for an
infinite cylinder,

We seek the harmonic functions u, (r, z) and uz (r, z) in the form of the following

integrals: ¢
ur (ry ) =\ A (A) Jo (hr) Ml (1.4)
) 0 o0
oo (1) A -
uy(r, z) = —i— S —{{I;O—(g)l sin vz dv S g (L) sinvE df + S AB (L) Im [——g"m tl;) ] e d, (1.5)
0 0 0 °

satisfying the indicated conditions at infinity and the second condition of (1,2), The

first condition of (1, 3) will become
o

oo
Hy® (xr)]
§ A\ Jo (hr)dA _§ AB (A) Im [ 2D () (1.6)
This enables us to use the Weber transforms to express B (A} in terms of 4 (A)
[ (o]
B = o Im (2 ) B (o)1 do § A.(9) To (ve) v .7
1 0

Fulfilling the remaining conditions of (1,2) and (1, 3) we can reduce the problem to
dual integrations (dual equations with the Weber kernel were considered e, g, in [1~3])
in 4 (A)
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(amnona=rn  o<r<n (1.9)
0
SAA (A) Jo (Ar) dA +S A2B (A) Im [_FIO;T‘%] A = —TFS KZE:;)vde g(¢) sinvg d{
[1] 0 0 0
(1 < r L) (1.9)

2. Reduction of the dual integral equations to the Fredholm
integral equations, Let us make the following integral substitution :
o0

A :S @ () cos At dt (2.1)
0
We shall find that it will be more convenient to seek @ (#) sepatately at each range
(0, 1) and (1, oo) of variation of ¢. We shall therefore use the following notation :
(D(t):{q)(t) 0<t <Y 2.2
P (1<t o)

Inserting (2, 1) into (1, 8) and using the well known relation [4]
¢ 0 (t>r)

- 2
§ Takrycoshedh=y L7 o 2 @.3)
we obtain r
P (t)dt
{ T =) 0<r <) (2.4)
[}
This is the Schiomilch equation in ¢ (#) and its solution is
t
2 d ¢ of(p)dp
PO =+ T’SV_—H——? (2.5)
Inserting now (2, 1) into (1. 9) we obtain 0
¢ ¢ 2 ¢ Koy (vr) ¢
S ).Jo(kr)dkg (D(r)cosktdtz—ig Igo(v) vdv S g () sinvg df —
0 1] 0 0
3 H® (hr)
—S A2B (1) Im [—J;OGW] dn  (1<rlo) (2.6)

0
Let us apply to (2, 6) the following integral transformation : multiply each term by
2/m r(ri— 2y ™V2 apd integrate with respect to » from ¢t to oo , Making also use of

¢ Jo(Ar)rdr  cosht (KOnrdr x5 § gO0nrd e 2.7)
Ve Lokt Vr_z =72r ¢ [z =7 &

i

we obtain (2, 6) in the form
9 F ot T 5 & [ piMt }d .
==\ i —= } —_— 2.
Oy=— S Ko tv) de g(f) sinvg dg — — §AB (A) Im 20 A (2.8)
1} 0
Let us consider (2, 8) in the region 1 < ¢ < oo. Its left side is P () and the first inte-
gral in its right side converges for all g (z) which can be expanded into Fourier sine
integral, We shall inspect the second integral in the right side of (2. 8) in more detail,
To begin with
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on

0 e
3 g (]') ~ d
By =\ p 1w (1 () 11,0 o)) dp | — et
v Ver—v
1 0
¢ ¢ HY () pd
=B,(1) + Im [ H,® (3) S P (r)ar | ——ﬁ)p—[] (2.9)
: gV
where B, () denotes the following function of A :
@ 1
= 2 P (v) dv
Bi(») _S e Im [Ho"™ (A) H,™ (Ap)] dpS Vo= (2.10)
1 0
which is already known,
By the third integral of (2, 7) we have
1. .
B (A) = Bi (M) + 5 S $ (1) Im [H,® (1) e**7] dv (2.11)
1
hence the second integral in the right side of (2, 8) can be written as
‘go it v pint @ ( o
AB (1) Jm —m——d}\, =& (1) + S Im -[T_] dh S P (v) Im [H, 2 (\) e ] dv
0 HT b o Ho™ 00 2 (2.12)
where o
s QM
t) = B —— | dh 2.13
Since
ot ] : Jo(A)  ax itee
(2 i) — . _ AL AL Y 2 -)] 2.14
Im l T Im [Hy® (1) e™7] = cos M cos AT Be[ 00 (2.14)
expression (2, 12) can be transformed into
- o o (2.15)
SXB £y 1 [—E—W—]dx—s B+ >y (1) —R [S —@—@——emdksw(r)ei“er
0 (/") m 1_10(1, 0\/) - ( )+ 2 1!’( ) € p Ho(l) (}\’) $

Let us consider the last integral on the complex variable A -plane, Using the Cauchy's
theorern we shall replace the integration along the real axis by the integration along the
imaginary axis, For A = iv we obtain

:‘O_JO_(}L it piAT w_d_"_oo. Io(wv) _.;. ¢ VT g
é Hou‘(x) dksw(r) dr._z(gzKO(v)e Ldvlslp(r), dt =
=5\ vw d‘S oy ey (2.16)
1

Inserting now (2, 16) into (2, 15) and (2, 15) into (2, 8), we obtain the following inte-
gral equauon :

~

- 1 ¢ ¢l L
Ko(v) Sg(g)smv; df— — S+~ Slp(r) dts K( b T gy (2.47)
1]

1
b)) =—

S0y

Introducing a new variable
om=Vi—19 (@) (2.18)
we obtain the following integral equation:
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m{tj_fz{é}-— ! Sm{{}}i’{i Ty dt {2.19)

where

t)w“lft_1[

{ & (.v) a§e@sinvzar—s o
0

fee]

G{ } ugv

S AW e BT gy AN)=n 75 Zol)° (2.20)

Kit, 1) =

it can be shown (see the Append1x) that, if & (). is a bounded and eontinuous function,
then Eq, (2. 19) has a unique solution in this case of functions,

Thus the solution is given by Formulas (1,4)—(1.7),(2. 1) and (2, 2), in which the funce~
tions @ () and ¢ (#) are defined by (2, 15) and the integral equation (2, 19),

8, Appendix, lLetus consider the operator ¥ = U (o) defined by

vo=n0- 3§ (=1 Y ame Do mar

1 o
i a space of bounded, continuous functions with the norm

plo, o*)=max jo () —o* (1)

and let us consider the modulus of the difference between y and y* where y* = U (0 *)

po—roi<zg | Z) ame el o -0 mins
1 4]
Amax . ¢ Vi—1dr
ST plese )S Vi—i(+1—2)
The last integral is easily calculated and is equal to n , hence
oy ¥*) < YVaAmax p (0, 0%)

BY (2.20) Apae = 1.3305 < 2, therefore

Py p*) >ople, 0% (al)
Thus the operator y == U (w)is a contraction operator and by the Banach theorem it

has a fixed point, This implies that @. 19) has a unique solution in the given class of
functions, which can be obtained by the method of consecutive approximations,

BIBLICGRAPHY

1, Arutiunian, N,Kh, and Babloian,A. A,, Contact problems for a half«
space with an inclusion, PMM Vol, 30, N6, 1966,

2, Abramian,B,L, and Arutiunian, N, Kh,, On some contact problems
for composite half-spaces, PMM Vol, 81, N6, 1967,

3, Srivastav,R,P,, An axisymmetric mixed boundary value problem for a half-
space with a cylindrical cavity, J, Math, and Mech,, Vol, 13, N3, 1964,

4, Watson, G, N,, A Treatise on the theory of Bessel Functions, Cambr, Univ,
Pr,, 1944,

Translated by L K,



